

CHANGES IN PHYSICO-CHEMICAL PROPERTIES OF ASSAM LEMON (CITRUS LIMON BURM.) AT DIFFERENT STAGES OF FRUIT GROWTH AND DEVELOPMENT

C. MUKHIM*, A. NATH¹, BIDYUT C. DEKA² AND T. L. SWER³

Department of Fruits and Orchard Management, Faculty of Horticulture,

Bidhan Chandra Krishi Viswavidyalaya, Mohanpur -741 252, Nadia, West Bengal, INDIA ¹Project Directorate for Farming System Research, ICAR, Modipuram, Meerut - 250 110, Uttar Pradesh, INDIA ²ICAR Research Complex for NEH Region, Nagaland Center, Jharnapani, Medziphema - 797 106, Nagaland, INDIA ³Dept. of Food Science and Technology, NIFTEM, Kundli, Sonepat -131 028, Harayana, INDIA e-mail: mukhimcallis@ymail.com

KEYWORDS

Assam lemon Maturity indices Physico-chemical Harvesting

Received on : 24.10.2014

Accepted on : 13.05.2015

*Corresponding author

INTRODUCTION

Citrus is the third most important fruit crop in India, after banana and mango. Citrus in India is grown in 0.48 million ha area with a total production of 4.27 million tonnes (Kumar et al., 2013). Citrus limon are important cultivars of lemon in India originating in Southeast Asia, China, and the Malayan Archipelago. The fruit is rich in vitamin C which helps the body to fight off infections and also to prevent or treat scurvy (Umadevi et al., 2011). Assam lemon (Citrus limon Burm.) is a seedless lemon cultivar which is widely grown in north-eastern states of India. Being an acidic fruit, it is mostly used for flavouring vegetable dishes, fish, meat and salads besides preparation of refreshing cold drinks, cordials and marmalades. Physico-chemical gualities and storage life of fruits would depend on various physiological and biological changes which occur during fruit growth, development and maturity. Such information is useful to assess the stage of maturity for harvesting of the fruit. Fruits picked at the wrong stage of maturity may develop physiological disorders in storage and may exhibit poor dessert quality. Therefore, the objective of the experiment is to investigate and identify the right stage of harvesting in Assam lemon under the mid hills conditions of Meghalaya.

MATERIALS AND METHODS

ABSTRACT

An experiment was undertaken under mid hills of Meghalaya, India, in order to study the changes in physicochemical properties of *Assam* lemon at different stages of fruit growth and development. The present study significantly showed that fruits harvested at 120 to 130 days after fruit set developed acceptable physico-chemical qualities with optimum fruit weight (109.28 to 112.95 g), fruit size (Length = \geq 81.05mm, Breadth = \geq 50.13mm), specific gravity (0.97 to 1.01), juice content (37.68 to 41.23 %), TSS (\geq 6.3 °Brix), titratable acidity (4.18 to 4.35%), ascorbic acid (\geq 32.41 mg/100g), TSS: acidity (\geq 1.51) and these may be considered as the most reliable maturity indices for taking harvest decision in *Assam* lemon fruit.

> An experiment was conducted at the Experimental Farm of the Division of Agro-forestry, ICAR Research Complex for NEH Region, Barapani, Umiam-793103, Meghalaya during the year 2008-2009. The experiment was laid out in completely randomized design and was replicated three times (Snedecor and Cochran, 1967). The flowers were tagged prior to fruit set and 20 fruits per replication were collected at 15 days interval up to 90 days after fruit set (DAF) and at 10 days interval from 90 DAF onwards for physical and chemical analysis. Physical parameters of the fruit were taken in terms of fruit length (mm), fruit breadth (mm), rind thickness (mm), length from pith to albedo (mm), fruit weight (g), specific gravity, juice content (%) and peel colour. Fruit length, fruit breadth, rind thickness and length from pith to albedo (LPA) were measured with digital vernier caliper, fruit weight with electronic balance, and specific gravity as weight per unit volume of the fruits (Shivasankar and Kumar, 1999). The juice was measured with the help of graduated cylinder and then expressed into percentage. The fruit peel colours were measured using a Hunter Lab Color Quest XE colorimeter (Mc Guire, 1992). Colour measurements were expressed in terms of L, a, b and colour difference (ΔE) values, where, L is a measure of lightness on a scale ranging from 0 (black) to 100 (white); +a denotes redness (Positive values), -a indicates greenness (Negative values); +b denotes yellowness (Positive values) and -b indicates blueness (Negative values) respectively. The fruit

quality parameters were studied in terms of total soluble solids (°Brix), titratable acidity (%), ascorbic acid (mg/100g) and TSS:acid ratio. Total soluble solid (TSS) was determined with the help of digital refractometer. Acidity and ascorbic acid content of the fruit were estimated following the standard procedures described by AOAC (1995).

RESULTS AND DISCUSSION

Physical characteristics

Physical attributes of Assam lemon at different stages of fruit growth and development is presented in Table 1 and Table 2. The fruit weight of Assam lemon showed double sigmoid pattern of growth. These observations had confirmed the earlier findings of Josan et al. (1988) and Sema and Sanyal (2003a). The increase in fruit weight, fruit length, fruit breadth and length from pith to albedo was prominent and significant from the initial stages of development i.e.30 up to 150 DAF. The change in the above parameters could be attributed to an increase in the size of the cell and accumulation of food substances in the intercellular spaces in fruit (Bollard, 1970). The fruit showed rapid increase in rind thickness in the first stage of growth (6.17 mm till 60 DAF) and then declined with maturity (3.50 mm at 150 DAF). Increase in rind thickness in the early stage was characterized by high metabolic rate (Bain, 1958). Specific gravity was higher in the beginning (1.48 at 30 DAF) and declined with the progress of fruit development, which was in agreement with the results of Sema and Sanyal (2003a). The specific gravity could swing either way (decrease or increase) depending upon the relative increases or decreases in weight and volume since the rates of these two attributes govern the specific gravity. Accumulation of juice was significantly influenced by the age of fruit. The juice percentage increased gradually till the last date of observation (150 DAF) which was in agreement with the finding of Ladaniya and Singh (2000) in Kagzi lime. The increase might be accounted mainly for the accumulation of water and solutes to the juice vesicles. Fruit peel colour in terms of L, a, b and ΔE values increased significantly with the advancement of fruit development i.e. L (36.10 to 61.21), a (-5.67 to -3.31), b (10.70 to 29.67) and ΔE (1.02 to 31.56) from 30 up to 150 DAF (Table 2). This was perhaps due to the increased accumulation of total carotenoids and degradation of chlorophyll (Miller et

al., 1940). Similar results were also observed by Deka *et al*. (2006) in *Khasi* mandarin.

Chemical characteristics

The quality attributes in terms of TSS, acidity, TSS:acid ratio and ascorbic acid were depicted in Table 3. TSS significantly decreased with the advancement of fruit growth (6.73° Brix to 5.57° Brix) with 5.93° Brix at 130 DAF. The higher value of TSS

 Table 2: Changes in fruit peel colour of Assam lemon at different stages of fruit growth and development

DAF	L	а	b	ΔE
15	-	-	-	-
30	36.10	-5.67	10.70	1.02
45	37.49	-6.17	11.40	2.08
60	40.64	-7.76	14.73	6.50
75	40.18	-7.50	14.09	5.63
90	38.27	-7.58	13.24	3.87
110	38.33	-7.32	13.37	3.92
120	46.08	-7.95	18.34	12.87
130	59.82	-4.60	26.18	28.36
140	57.12	-1.22	26.64	27.19
150	61.21	-3.31	29.67	31.56
S.Em ±	2.55	1.22	1.64	3.02
CD _{0.05}	7.52	3.59	4.84	8.90

DAF = Days after fruit set

Table 3: Changes in chemical parameters of Assam lemon at different
stages of fruit growth and development

- 0	0			
DAF	TSS (⁰ Brix)	Titratable Acidity (%)	Ascorbic Acid (mg/100g)	TSS: acidity
15	-	-	-	-
30	6.73	1.17	90.45	6.06
45	6.57	1.96	56.45	3.59
60	6.53	3.65	51.39	1.79
75	6.50	3.82	51.39	1.71
90	6.47	3.86	44.45	1.68
110	6.37	3.97	36.11	1.60
120	6.30	4.18	32.41	1.51
130	5.93	4.35	30.56	1.36
140	5.93	4.46	27.78	1.33
150	5.57	4.86	11.11	1.16
S.Em ±	0.12	0.21	3.47	0.35
CD _{0.05}	0.36	0.62	10.23	1.03

DAF = Days after fruit set

Table 1: Changes in physical characteristics of Assam lemon at different stages of fruit growth and	development

DAF	Fruit Weight (g)	Fruit Length(mm)	Fruit Breadth(mm)	Specific Gravity	Rind Thickness(mm)	LPA (mm)	Juice (%)
15	0.42	16.72	5.97	1.41	-	-	-
30	12.53	44.84	21.22	1.48	5.52	6.26	-
45	37.44	68.54	32.96	1.08	5.80	7.13	12.26
60	62.87	74.09	40.70	0.97	6.17	9.87	28.80
75	66.62	76.04	41.92	0.97	5.92	14.39	29.25
90	68.32	78.97	40.51	0.97	4.93	14.77	33.44
110	100.07	79.10	48.28	0.94	4.82	17.69	35.02
120	109.28	81.05	50.13	0.97	4.34	18.35	37.68
130	112.95	82.06	48.98	1.01	3.90	20.02	41.23
140	125.00	82.99	51.97	1.06	3.56	20.19	41.75
150	146.51	92.04	57.38	1.21	3.50	20.25	41.83
S.Em ±	13.42	5.77	1.75	0.09	0.23	0.99	3.93
CD _{0.05}	39.36	16.93	5.13	0.28	0.68	2.92	11.67

DAF = Days after fruit set

at the initial stage of fruit growth might be due to more accumulation of sugar which later converts to organic acids. The level of acidity was found to increase significantly with the advancement of fruit growth and development (1.17% to 4.86%) with optimum acidity content 4.35% at 130 DAF. Increase in citric acid during fruit development might be due to higher synthesis of acid in juice vesicles by enzymatic action (Ricevuto, 1933). Similar finding was also reported by Ladaniya and Singh (2000) in Kagzi lime. The TSS: acid ratio was found to decrease significantly with increasing fruit growth and development with maximum (6.06) at 30 DAF and minimum (1.16) at 150 DAF. Decrease in TSS: acid ratio might be attributed to relatively higher rates of accumulation of acids coupled with rapid decrease in TSS. The level of ascorbic acid content remained high in immature fruit and gradually declined with the advancement of fruit growth (Ascorbic acid content at 30, 130 and 150 DAF is 90.45, 30.56 and 11.11 mg/100g respectively). The decline in ascorbic acid during the course of maturation could be due to its utilization in certain metabolic process. The present results were in conformity with the findings of Sema and Sanyal (2003b) in Assam lemon.

REFERENCES

AOAC 1995. Official Methods of Analysis, 16th Edn. Association of Official Analytical Chemists International, Virginia, USA.

Bain, J. M. 1958. Morphological, anatomical and physiological changes in the developing fruit of the Valencia orange, *Citrus sinensis* (L.) Osbeck. *Aust. J. Bot.* **6:** 1-24.

Bollard, E. G. 1970. Physiology and nutrition of developing fruits. *In*: The Biochemistry of Fruits and Their Products. Vol. 1, Hulme, A. C.

Ed: Acad. Press, London. pp. 387-425.

Deka, B. C., Sharma, S. and Borah, S. C. 2006. Post harvest management practices for shelf-life extension of *Khasi* mandarin. *Indian J. Hort.* 63(3): 251-255.

Josan, J. S., Monga, P. K., Chohan, G. S. and Sharma, J. N. 1988. Biochemical changes during development and ripening in the fruits of Wilking mandarin. *Indian J. Hort.* **45**: 12-17.

Kumar, M., Parthiban, S., Saraladevi, D. and Ponnuswami, V. 2013. Genetic diversity analysis of acid lime (*Citrus aurantifolia* Swingle) cultivars. *The Bioscan.* 8(2): 481-484.

Ladaniya, M. S. and Singh, S. 2000. Maturity indices for acid lime (*Citrus aurantifolia*) cultivar 'Kagzi' grown in central India. *Indian J. Agric. Sci.* **70(5):** 292-5.

McGuire, R. G. 1992. Reporting of objective colour measurement. *Hort. Sci.* 27(12): 1254-1255.

Miller, E. V., Winston, J. R. and Schomer, H. A. 1940. Physiological studies of plastid pigments in rind of maturing oranges. J. Agric. Res. 60: 259-267.

Ricevuto, A. 1933. The formation of citric acid in lemons. *Ann Di Chim. Apple (Rome).* **23:** 411-13.

Sema, A. and Sanyal, D. 2003a. Developmental physiology of lemon fruits. I. Physical characteristics. *Crop Res.* 26(3): 446-451.

Sema, A. and Sanyal, D. 2003b. Developmental physiology of lemon fruits. II. Chemical characteristics. *Crop Res.* 26(3): 452-457.

Shivasankar, S. and Kumar, V. 1999. Pattern of fruit development in six banana varieties. *Ind. J. Plant Physiol.* 4(4): 286-288.

Snedecor, G. W. and Cochran, W. G. 1967. Statistical methods, Oxford and IBH Publ. Co., New Delhi.

Umadevi, K. J., Vanitha, V. and Vijayalakshmi, K. 2011. Antimicrobial activity of three Indian medicinal Plants - an in vitro study. *The Bioscan.* 6(1): 25-28.

APPLICATION FORM NATIONAL ENVIRONMENTALISTS ASSOCIATION (N.E.A.)

To, The Secretary, National Environmentalists Association, D-13, H.H.Colony, Ranchi - 834 002, Jharkhand, India

Sir,

I wish to become an Annual / Life member and Fellow* of the association and will abide by the rules and regulations of the association

Name			
Mailing Address			
Official Address			
E-mail	Ph. No		
Date of Birth	Mobile No.		
Qualification			
Field of specialization & research			
Extension work (if done)			
Please find enclosed a D/D of Rs Annual / Life membership fee.	No	Dated	as an
*Attach Bio-data and some recent put the association.	blications along with the application	n form when applying for the	Fellowship of
Correspondance for membership and	' or Fellowship should be done on the	following address :	
SECRETARY, National Environmentalists Associatio D-13, H.H.Colony, Ranchi - 834002 Jharkhand, India	n,		
E-mails : m_psinha@yahoo.com dr.mp.sinha@gmail.com	Cell : 9431360645 Ph. : 0651-2244071		